Interpreting Large Coefficients in Regressions with Log-Dependent Variable

1 Problem from Large Coefficients

When estimating a regression of the form:

$$ln(Y) = \beta X + \varepsilon,$$
(1)

the coefficient β is often interpreted as the approximate percentage change in Y for a one-unit change in X, given by:

$$\%\Delta Y \approx 100 \times \beta. \tag{2}$$

However, this is only an approximation. The exact percentage change is given by:

$$\%\Delta Y = (e^{\beta} - 1) \times 100. \tag{3}$$

When β is small (e.g., 0.05), the approximation $100 \times \beta$ is close to the exact percentage change. When β is large (e.g., 1 or more), the approximation underestimates the actual effect. For example:

• If $\beta = 0.05$, then:

$$e^{0.05} - 1 \approx 5.13\%,\tag{4}$$

which is close to 5%.

• If $\beta = 1$, then:

$$e^1 - 1 \approx 172\%,\tag{5}$$

which is far from the approximation of 100%.

2 When is the Approximation Accurate?

The approximation works well for small values of $|\beta|$, but it becomes increasingly inaccurate as $|\beta|$ grows. The following rules of thumb apply:

- If $|\beta| < 0.1$, the approximation is very accurate (error < 0.5%).
- If $|\beta|$ is between 0.1 and 0.2, the approximation is reasonable (error < 2%).
- If $|\beta| > 0.3$, the approximation starts to diverge significantly.
- If $|\beta| \ge 0.5$, the approximation underestimates the true percentage change, and the exact formula should be used.
- If $|\beta| \ge 1$, the approximation is highly inaccurate and should never be used.

3 Comparison of Approximation and Exact Calculation

Below is a comparison of the two methods for different values of β :

β	Approximation (100β)	Exact Calculation $((e^{\beta} - 1) \times 100)$
0.05	5%	5.13%
0.1	10%	10.52%
0.2	20%	22.14%
0.5	50%	64.87%
1.0	100%	171.83%
1.5	150%	348.85%

4 Conclusion

For small values of β , the approximation 100β is acceptable. However, for larger coefficients (especially above 0.3), the exact formula should be used to avoid underestimating the percentage change in Y.